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ABSTRACT

P2P Grids are Grids organized into P2P networks where par-
ticipant exchange computing time so as to complete compu-
tational tasks. Evaluating the performance of scheduling al-
gorithms enables one to deploy those that are efficient. Per-
formance is often evaluated experimentally or through simu-
lation because these algorithms (typically heuristics) are too
complex to model analytically. Testing the implementation
of P2P Grid middleware before it is deployed is also impor-
tant: Reproducing configurations or conditions that lead to
unexpected outcomes is thus valuable.

A P2P Grid environment exhibits multiple sources of fail-
ure and is typically dynamic and uncontrollable. Reproduc-
ing even basic behavior of Grid nodes in a controllable and
repeatable manner is thus exceedingly difficult. Such lack
of control over the environment is a major challenge in the
software engineering of P2P Grid middleware [7]. Simulators
have been proposed to evaluate the performance of schedul-
ing algorithms, but are often limited in scope, reusability
and accuracy, i.e. they rely on simplified models.

We introduce a software engineering pattern - that we call
code once, deploy twice - to both reduce the distance between
simulated and implemented algorithms and reproduce, at
will, Grid configurations and environments: A simulator
implementation of a Grid architecture is built by virtual-
izing its middleware implementation. An immediate benefit
is that most of the code can be reused between both im-
plementations; only communications between Grid nodes,
multithreading within Grid nodes and actual task execution
are coded differently. As a derived benefit, most of the code
of the middleware can be tested within the controlled envi-
ronment of the simulator, before it is deployed as-is. An-
other benefit is high simulation accuracy. We describe the
implementation of a P2P Grid following the code once, de-
ploy twice pattern, that we believe is also relevant to other
Grid types (certainly Volunteer Grids [5, 4] and Desktop
Grids [22], and possibly Globus-based Grids [3]).
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1. INTRODUCTION

Grid scheduling algorithms are typically evaluated exper-
imentally according to the values of metrics such as mean
BoT (Bag of Tasks) response time, system utilization, pre-
emption history, ... Feeding synthetic or trace workloads to
scheduling algorithms running in a controlled environment,
enables the observation of the behavior and interactions of
Grid nodes in an efficient, controllable and reproducible way.

Simulation allows one to run a whole Grid in a controlled
environment, running on a single computer rather than on
many real computers communicating over the Internet. The
purpose of a discrete-event system simulator is to provide a
controlled environment where the environment of Grid nodes
as well as their time-consuming operations - such as task
execution - are abstracted. A simulator takes a simulation
description file as input, lets Grid nodes interact and pro-
vides execution statistics as output. The temporal cost of
simulation can be very small compared to the real execution
of a system. The time to simulate many hours of execution
time can be compacted down to a few minutes.

We propose a software engineering pattern to develop Grid
middlewares and simulators that we call code once, deploy
twice. This pattern consists of building the simulator imple-
mentation of a Grid architecture by virtualizing its middle-
ware implementation. It is based on the virtualization of the
Grid middleware itself at the middleware level (not at the
hardware or operating system level), which corresponds to
the virtualization of the Fabric, Connectivity and Resource
layers [17] in Foster et al.’s Grid architecture.



A discrete-event simulator is embedded directly into the
Grid middleware. This contrasts with the typical approach
that consists of including components (as-is or more often
simplified) to simulate into the simulator. Both the middle-
ware and the simulator use essentially the same code, includ-
ing the scheduling code. Only some operations (interactions
between Grid nodes, multithreading within Grid nodes, and
actual task execution) are abstracted in the simulator.

This massive code reuse results in high simulation accu-
racy as well as in several software engineering benefits: Un-
necessary software engineering efforts are avoided; The mid-
dleware and the simulator can be shipped together and de-
ployed from the same software package. An algorithm that
is available in the simulator is also immediately available in
the middleware. Testing Grid middleware is thus greatly
facilitated.

The code once, deploy twice pattern has been used to
implement a recent P2P Grid architecture, LBG [9]. We
believe that the pattern and implementation are relevant
to other Grid types (Globus-based, Volunteer or Desktop
Grids) processing long-running computational tasks. More-
over, our approach is complementary with - and does not
replace - other forms of testing such as enforcement of invari-
ants, unit testing, automatic verification, static analysis [1,
18] or run-time monitoring [1] and testing of multi-threaded
code [13].

The rest of this paper is structured as follows. Section 2
provides a solid background on P2P Grids and discrete-event
simulation. Our implementation in Java J2SE 5.0 of a P2P
Grid architecture [9] following the code once, deploy twice
pattern is covered in Sections 3 and 4. Section 3 explains
how to virtualize Grid nodes following the code once, deploy
twice pattern. Section 4 describes our proposed discrete-
event P2P Grid simulator. Section 5 introduces a distributed
testing process and shows how self-bootstrapping can be
achieved. Section 6 presents experimental results. Section 7
discusses related work. Finally, Section 8 summarizes our
contributions and discusses future work.

2. BACKGROUND
2.1 P2P Grids

2.1.1 Bartering

A P2P Grid is composed of peers, resources and user
agents (see Figure 1). Resources are worker computers that
run tasks, and thus generate computing time. Because of the
nature of P2P Grids, involved resources are running on so-
called edge computers. They thus typically exhibit degraded
performance and intermittent availability due to both task
execution failure and preemption.

A peer manages a set of resources on behalf of user agents.
Peers first use their own resources to compute tasks submit-
ted by user agents. Peers can also barter computing time
with one another at the task level. In a P2P Grid context,
bartering [12, 9] is defined as distributed, non-monetary ex-
change of computing time. At peak time, a peer can thus
consume computing time from other peers, and supply it
back later, at times of low demand levels. A P2P Grid is
fully decentralized. Each peer autonomously makes its own
bartering and scheduling decisions, based on past interac-
tions with other peers (which it must store).
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Figure 1: P2P Grid example: 2 user agents, 4 peers,
8 resources.
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Figure 2: Peer scheduling model and policy decision
points. Each peer independently follows this model.

LBG! [9] (Lightweight Bartering Grid) is a recent P2P
Grid architecture similar to OurGrid [12]. Running the LBG
peer middleware or the LBG resource middleware enables to
make a computer part of the Grid as, respectively, a peer
or a resource. The task model in LBG is the Bag of Tasks
(BoT), i.e. an application constituted by a set of independent
computational tasks. There is an implicit support for co-
allocation in LBG. Peers try to compute their local tasks as
fast as possible, requesting access to resources of other peers
as needed until their local tasks are completed.

2.1.2  Scheduling Model

Figure 2 illustrates the peer scheduling model and policy
decision points. The typical execution cycle in LBG is as
follows. User agents submit BoT's to peers. Each peer sched-
ules these local tasks first to its own resources. As long as
a peer has queued local tasks and no available resource, it
can ask other peers to supply computing time, i.e. run these
tasks as external tasks on their resources.

When a peer accepts to supply computing time to com-
pute an external task, it queues it in a second queue sep-
arate from local tasks. Each peer waits for some of its re-
sources to be available before computing queued external
tasks. Each peer may preempt the execution of external
tasks (i.e. submitted by other peers) whenever it has local
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tasks to compute. Each peer can filter requests for com-
putations of external tasks so that its external tasks queue
does not grow out of control. Each peer is equipped with a
task control mechanism that preempts tasks that take too
long to complete. Each peer makes its own scheduling de-
cisions independently, so that the P2P Grid architecture is
fully decentralized.

Task execution is dedicated at the resource level. At any
time, at most one task can be run by a given resource. A
highly scalable data transfer architecture [8] ensures the ef-
ficient transfer of input data files across the P2P Grid.

2.1.3 Grid Nodes Messaging Model

The Grid Node Messaging Protocol (GNMP) is a simple
messaging protocol for message passing between Grid nodes.
It is based on serialized Java objects transmitted over non-
persistent TCP connections. It follows the handle/service
pattern (see Figure 3).

message

>
-r.e-ply .
Grid node Grid node

Figure 3: Handle/Service pattern.

Each Grid node is equipped with a service component that
processes incoming GNMP messages. Grid nodes send mes-
sages through handles, which are Java objects encapsulating
the necessary logic and data to communicate with the corre-
sponding service. The handle/service pattern thus abstracts
the underlying communication protocol.

2.1.4 Application Programming Model

The LBG middleware supports Java-programmed tasks.
In practice, any J2SE 5.0 Java application can be easily
prepared to be run on the Grid. One Java class is selected
as an entry point by implementing a given interface. All
Java classes must be packaged into a jar file. A Bag of
Tasks (BoT) is composed of a properties file designating the
jar file of each task, along with input parameters and data
files.

Resources run tasks in a dedicated Java Virtual Machine
(VM), separate from the middleware. A security policy en-
forces the sandboxing of task execution, i.e. restricts inter-
actions of the VM with its environment.

2.2 Virtualization Levels

Virtualization is the injection of an abstraction layer be-
tween an application and some resources used by that appli-
cation. It provides a logical rather than physical view of data,
computing power, storage capacity, and other resources ...
involving the simulation of combined, fragmented, or sim-
plified resources [27]. The following classification of virtual-
ization levels is inspired by Casanova et al.’s [11]; real ex-
ecutions on real platforms, without modification, are not
considered because they are uncontrollable by their very na-
ture.

2.2.1 Virtual Machines and Emulators

At a low level, the hardware environment of the system
is completely or partially abstracted. Virtualization tech-

nologies operate at this level. Resources run unmodified in
a virtual machine (VM) that is controlled by a virtual ma-
chine monitor (VMM), or hypervisor.

This is actually emulation and does not require any mod-
ification of the studied system. The drawback is that it can
be very slow, as the system operates at nominal run-time
speed. Simulating one hour of operation of a system takes
about one hour, which is unacceptable for Grid operations
that span many hours.

2.2.2 Discrete-Event System Simulators

At a higher level, some operations of the system itself are
simulated. The system is run, and controlled, by a discrete
event system simulator. System simulation within a simula-
tor can be fast, as most time-consuming operations can be
abstracted. Communication between system components is
very fast because they run together, using the same memory
heap. Simulating one hour of operation of a system may be
as fast as a few minutes or even seconds.

2.2.3  Mathematical Simulation

At the highest level, most operations of the system are ab-
stracted with an analytical model. The system is controlled
by a simple simulator. On one hand, system dynamicity is
difficult to take into account, and complex systems are com-
plex to model. On the other hand, it is very fast... when a
model is available, which is typically not the case for Grids.

2.3 Discrete-Event System Simulation

2.3.1 Basic Simulation Concepts

Discrete-event system simulation [6] is the modelling of a
system over time through its state and a sequence of events.
A system is a set of entities interacting with one another,
e.g. Grid nodes. The system state is a set of variables, e.g. in-
ternal state of Grid nodes. A simulator event represents an
asynchronous change in system state and is associated with
a timestamp. Statistics on the state of the simulated system
are collected and constitute the output of the simulator.

There exists three classical formalisms [19]. Activity Scan-
ning “is a form of rule based programming, in which a rule
is specified upon the satisfaction of which a predefined set
of operations is executed.” [19] With a Process Interaction
formalism, “each process in a simulation model specifica-
tion describes its own action sequence.” [19] With the Event
Scheduling formalism, events are defined “at which discon-
tinuous state transitions occur” and “can cause, via schedul-
ing, other events to occur.” [19]

2.3.2 Event Scheduling

Event Scheduling is the most appropriate for the software
engineering of P2P Grids. The simulation problem can be
expressed in a natural way and simulators based on this
formalism are usually faster, although harder to implement.

The event list is the data structure that maintains future
events ordered by increasing timestamp. Operations of a
discrete-event system simulator based on Event Scheduling
(in the following: simulator, for short) are organized around
the management of an event list, typically with the Event
Scheduling/Time Advance algorithm [6]:

1. The main loop of the simulator sequentially extracts
events at the head of the event list;
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Figure 4: Discrete-event simulator of P2P Grid.

2. When an event is extracted from the event list, the
simulator updates the global system time to the value
of the timestamp of this event;

3. To process an extracted event, the event processor up-
dates the system state and may insert new events into
the event list, in the correct temporal order.

A simulation is started by initializing the system state and
time, and also by inserting one or more initial events into
the event list. The simulator then enters into its main loop
to process events one by one. A simulation could run forever
as long as it is fed new events. Criteria to stop simulation
include [27]: the system time has exceeded a certain value;
the number of events inserted into the system has exceeded
a certain threshold; some (possibly indirect or composed)
measure of system state has reached a certain value.

Figure 4 illustrates a simulator of P2P Grid. Its input is a
file describing the computational power and topology of the
Grid to be simulated, the configuration of the Grid nodes
and the synthetic workloads to be submitted. Its output is
a set of simulation statistics.

3. GRID NODES VIRTUALIZATION

Simulated Grid nodes are instantiated during the initial-
ization of our proposed Grid simulator (see Figure 4). The
code of these simulated Grid nodes is loaded (using the Java
VM class loader) and shared among all instances, but each
simulated Grid node has its own separate data structures
(those of peers grow over time due to the storage of meta-
data about interactions with other peers, as explained in
Section 2.1.1).

The code of the simulator implementation of Grid nodes
is identical to the code of the middleware implementation.
However, some parts of the code have two distinct imple-
mentations: One is activated in the simulator, the other one
is activated in live Grid nodes. The dual-implemented Java
classes are those involved in communications between Grid
nodes, multithreading activities and task execution. The
simulated Grid nodes have to be virtualized, i.e. isolated
from their environment, so that they are not aware of run-
ning within the same thread of the same Java VM and of
interacting with a fully controlled, virtualized environment.

The virtualization of the Grid nodes code from the mid-
dleware implementation is described in this section. The
virtualization of communications between Grid nodes is first
discussed, followed by the virtualization of Grid nodes them-
selves. The virtualization of multithreading activities is es-
sentially done for peers, while the virtualization of actual
task execution is essentially done for resources. Figure 5 il-
lustrates the differences in execution paths in the case of a
live Grid and of a simulated Grid.

3.1 Grid Nodes Messaging Virtualization

In the LBG architecture, GNMP messages pass through
handles and services (see Section 2.1.3). In the middleware
implementation, a handle performs a network call to send
a message to the corresponding service. In the simulator
implementation, the network call is replaced by a method
call as all handles and services reside in the same Java VM;
the transmission of simulated GNMP messages is considered
to be infinitely fast (which is reasonable given the context of
distributed systems with long-running tasks) and does not
cause the system time to be updated.

The processing of GNMP messages by peers is identical
in the simulator and in the middleware implementations of
peers, but varies in the implementations of resources and
user agents: Task execution and submission are virtualized
in the simulator implementation.

3.2 Peer Virtualization

The middleware and simulator implementations differ only
in how multithreading is implemented. In the middleware
implementation, many threads (including the service, timer
manager, scheduler, negotiator, data management threads)
are started when the peer comes online. In the simulator
implementation, a time-delayed communication channel for
activation signals - the environment controller - is instanti-
ated and no thread is started.

3.2.1 Multithreading Virtualization

In the middleware implementation, many threads are run-
ning in every Grid node. Although the service manager
(see Section 2.1.3) of every Grid node is simulated, service
threads are not. Indeed, a service manager is a purely reac-
tive device. The simulation of helper threads used for task
execution and data transfers is straightforward as these op-
erations are abstracted into a very simple model.

The challenge therefore consists of simulating the threads
of the scheduler and timer manager of every simulated peer.
Running all the scheduling and time management threads
within the simulator would be possible but would degrade
the simulator scalability. Indeed, the number of threads lin-
early depends on the number of simulated peers. The sched-
ulers and timer managers should therefore not run within
their own, dedicated threads. We propose that the simula-
tor regularly activates every scheduler and timer manager
to simulate the multithreading activities of the middleware
implementation.

3.2.2 Environment Controller

To simulate the multithreading of the scheduler and timer
manager threads, a device called environment controller is
introduced. It is a time-delayed communication channel that
stores - but does not immediately communicate to the sched-
ulers and timer managers - the activation signals emitted in
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Figure 5: Peer-to-resource interaction illustrating the difference in execution paths between Grid nodes.

other parts of the peer code. The environment controller
intercepts activation signals. It precludes the need for an
inter-thread communication mechanism, as everything runs
in one single thread (the simulator thread).

When a scheduling activation signal is emitted, it is sent
to the appropriate scheduler controller. In the simulator
implementation, this signal is not immediately forwarded
to the scheduler; the state of the environment controller is
updated instead. The actual forwarding of an activation
signal to the relevant scheduler or timer manager is done
when the simulator activates the environment controller (see
Figure 6).

Multithreading is simulated after all simulator events at
the current timestamp have been processed (with all reac-
tive interactions between Grid nodes completed). At this
point the environment controller is activated. In turn, it
activates the scheduler and timer manager of every peer in
arbitrary order. The environment controller reads - and re-
sets - its state for every peer: When activation signals have
been stored for a given peer, the corresponding scheduler
is activated. The timer manager is systematically activated
for each peer every simulated time unit.

The environment controller is activated after the process-
ing of simulator events with the same timestamp. This
is done to guarantee the completion of all interactions be-
tween Grid nodes that result from events with that times-
tamp. The environment controller could be activated after
the processing of each simulator event, but it would proba-
bly bring limited benefits. The environment controller could
also be activated during the processing of each simulator
event. This would require simulator-level multithreading,
with a number of threads proportional to the maximum
number of simulated peers that could be involved in cas-
cade interactions.

3.3 Resource Virtualization

The task management code is shared by the middleware
and simulator implementation of a resource. Task execution
and preemption are implemented differently. The limited
multithreading within a resource is not simulated because
it is not needed. Transfer and storage of input data files
required by tasks are currently not simulated.

3.3.1 Simulation of Task Execution

In the middleware implementation, running a task consists
of launching within a helper thread an execution module
that asynchronously starts and controls a new Java VM to

run the task. This is done in order not to block the resource
service thread.

In the simulator implementation, running a task essen-
tially consists of deciding whether to simulate a failure of
execution or do nothing for some time, i.e. simulate task
completion. In the simulator, simulated user agents submit
tasks with a fictive run-time (for a resource with a power
of one unit), defined by the human user of the simulator.
A computing power is associated to each simulated resource
by the human user of the simulator. It is therefore straight-
forward to estimate the simulated run-time of a given task
on a given resource. Finally, a simulated resource uploads a
dummy output data file to its owner peer when it success-
fully completes a simulated task.

3.3.2  Simulation of Task Execution Failure

A simulated resource can be configured to fail a small
number of randomly selected task executions. This is use-
ful both to test the behavior of peers and the performance
of scheduling algorithms. Task execution failures are rare
events. They are modelled by a Poissonian process and an
exponential distribution is used to determine actual failure
probability.

3.3.3  Simulation of Task Preemption

In the middleware implementation, preempting a task con-
sists of asking the execution module to destroy the Java VM
where the Grid application is running.

In the simulator implementation, preempting a task is
not as straightforward. The state of the simulated resource
must be updated in case of simulated task execution fail-
ure, which may happen for several reasons: Resource failure,
preemption or cancellation (= preemption without subse-
quent requeueing). Task execution time-out and reclaiming
of computational power are the two major causes of preemp-
tion/cancellation.

4. SIMULATOR IMPLEMENTATION

The implementation of major simulator components (sim-
ulator clock, event list/processor, main simulator loop and
simulation description language) are now described.

4.1 Time Management

The middleware and the simulator implementations use
the same interface to read the current time. In the mid-
dleware implementation, the time is provided by the Java
VM and is updated by the computer clock. In the simulator
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implementation, the returned time does not come from the
computer clock. The returned time is read from a simulator-
wide simulated clock instead. The clock is initialized to zero
simulated time units at the beginning of a simulation. It
is updated by the event processor only, when all simulator
events happening at a given timestamp have been processed.
The temporal resolution of the simulated clock, i.e. the value
symbolized by one simulated time unit, is currently one sec-
ond.

In the middleware implementation, time desynchroniza-
tion between clocks of Grid nodes does not give rise to ma-
jor issues. Indeed, a P2P Grid is designed to operate in
a fully decentralized way. In the simulator implementation,
time synchronization between simulated clocks of Grid nodes
must be enforced so that the simulator can correctly com-
pute simulation statistics. As simulated Grid nodes trans-
parently share the same simulated clock, continuous time
synchronization is guaranteed.

4.2 Simulator Events

Each simulator event represents an asynchronous change
in system state and is associated with a timestamp (see Sec-
tion 2.3). Simulator events are inserted into the event list by
simulated Grid nodes and processed in the main simulator
loop by the event processor. There are currently four types
of simulator events: (1) BoT submission, (2) completion of
task execution, (3) failure of task execution, (4) timer event.

The event processor extracts events from the event list (see
Figure 7). For each event, the event processor calls code
that, in the middleware implementation, would be called
from a Grid node following a signal from its environment,
e.g. status of task execution or input from a human user.

4.2.1 Processing of BoT Submission Events

Each simulated user agent is activated by the simulator to
submit new BoT's to the peer it is using. When submitting a
BoT, it simultaneously inserts a new event into the event list
so that, at the expected timestamp, the simulator activates
it. A new BoT is then submitted and this cycle goes on
(until the configured number of BoTs has been submitted).
Inserting a submitted BoT event into the event list can be
seen as a form of callback mechanism.

4.2.2  Processing of Task Completion/Failure Events

Simulating a simulator event related to task execution is
a two-step process. Firstly, when a task is sent to a resource
for execution, the simulated resource makes a random deci-

sion about its reliability and inserts (with high probability)
a completed Task execution event or (with low probability)
a failed Task execution event into the event list.

Secondly, when a task execution event occurs, a simulated
resource is activated by the simulator. In the middleware im-
plementation, this would happen when the Grid application
run by the resource actually completes or fails its execution.
Upon a task execution event, the simulated resource - acti-
vated by the event processor - either uploads results to its
owner peer or notifies that the running task has been pre-
empted. In either case, the peer state is correctly updated.

4.2.3 Processing of Timer Events

The Concurrent execution of the timer manager of each
peer is simulated by activating it every simulated time unit,
so as to simulate the timer manager thread. The activation
of timer managers of all peers is triggered by one simulator
timer event. After an event has been processed, a new one
is immediately inserted into the event list with a timestamp
set one simulated time unit later.

There is one exception to the insertion of a new timer
event into the event list: When the event list is empty (pro-
vided that there is no running timer that would require the
processing of a timer event), no new timer event is inserted
into the event list. This exception must be enforced so that
the main simulator loop does not enter into an infinite cy-
cle which would lead to a situation where a timer event is
removed from the event list (thus emptying it) before a new
one is immediately added.

The processing of a timer event is done by activating, se-
quentially within the main simulator thread, the timer man-
ager of each peer. The environment controller is ideally po-
sitioned to perform this activation, as it already has access
to peer components.

4.3 Main Simulator Loop

The processing of each event updates the state of the sim-
ulated Grid. It often leads simulated Grid nodes to exchange
GNMP messages with one another. It also often leads to the
generation of new simulator events.

The simulation of multithreading activities, e.g. schedul-
ing, is activated by the environment controller (see Sec-
tion 3.2.2), when all simulator events with the current times-
tamp have been processed. Multithreading activities are
individually activated for a given peer if activation signals
have been emitted (see Figure 6) during the processing of
simulator events at the current timestamp.
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New simulator events are inserted into the event list as
long as simulated user agents submit tasks to peers. The
main simulator loop stops when the event list is empty. As
submitted tasks complete their simulated execution, simu-
lator events are eventually removed from the event list.

If an event extracted from the event list has a timestamp
strictly greater than the timestamp of the previously ex-
tracted event, the simulator updates the system-wide clock
to simulate the advance of time.

4.4 Limits of the Current Implementation

Transfers of input/output data files between Grid nodes
are currently not simulated. The time taken to complete
simulated BoT's will inevitably be shorter than what it should
be, especially for Data-Intensive BoT's. We are aware of this
issue which will require considerable amounts of work in or-
der to be fully addressed; related research that would prove
useful in this respect includes Casanova, Legrand et al. [11,
21] and Eger et al. [16].

The activities of multiple peers, notably scheduling, are
sequentialized in the simulator implementation because Grid
nodes are no longer running independently from one an-

other. GNMP messages (see Section 2.1.3) sent concurrently
by live Grid nodes running the middleware implementation
are also sequentialized. The processing order of GNMP mes-
sages sent simultaneously by multiple Grid nodes will thus
vary from what it would be for live Grid nodes running
the middleware implementation. Indeed, the order of multi-
threading simulation as well as the order of insertion and ex-
traction of simultaneous simulator events are currently both
arbitrary. Moreover, multithreading simulation takes place
only after all simulator events at the current timestamp have
been processed.

The processing order of single GNMP messages will also
vary slightly from what it would be for live Grid nodes run-
ning the middleware implementation. Indeed, small hard-
ware- or network-level variations, e.g. high CPU load or
network delays, would be exceedingly difficult to reproduce.

Simulating the network transfers of GNMP messages and
introducing true parallelism in the simulation of multithread-
ing would enable the detection of complex timing issues.
This requires further work, starting with an event-driven
reimplementation of communications within threads of sin-

gle Grid nodes.

4.5 Simulation Description Language

The configuration of a Grid can be easily described in a
simulation description file, also called a scenario. A simu-
lation run refers to one execution of the simulator with a
given scenario, i.e. one simulation of a whole P2P Grid in
a controlled environment defined by a given scenario. A
simulation description language has been defined (with its
own BNF grammar) to easily test various Grid configura-
tions and workloads; only the more relevant parameters are
sketched in the next paragraphs.

One user agent is implicitly assigned to each peer (more
could be assigned, but our focus is P2P rather than UA2P in-
teractions). A synthetic workload is generated by each user
agent according to several parameters: (1) number of BoTs
to submit and number of tasks per BoT, (2) initial time
shift before beginning to submit BoTs, (3) bounds of the
BoT inter-submission time distribution (i.e. time between
two consecutive BoT submissions), (4) bounds of the task
run-time distribution (for a resource with a power equal to
one), (5) description of tasks’ input data files. The run-time
distribution of simulated tasks is used only in the simulator
implementation to simulate task execution and compute ex-
ecution statistics. This run-time distribution, which would
be hard to estimate for real tasks, is not used by the schedul-
ing algorithms.

Each simulated resource is assigned a resource power [26],
(in an absolute unit) which is a multiple of a known base
power. It is thus easy to set the power of several resources
relatively to one another. The peer power represents the
total power of the resources managed by the peer; it can
be split explicitly or randomly between these resources. An
MTBF value (see Section 3.3) can also be specified (indepen-
dently for each resource) to simulate task execution failures
caused by resource failures.

Scheduling policies and several control parameters have
to be defined for each simulated peer. In all, 32 parameters
(related to scheduling, negotiation, accounting, data man-
agement, simulation control) currently have to be defined
for each scenario.



S. DISTRIBUTED TESTING

The LBG simulator is not designed to be a distributed
application itself, but a set of simulator instances can con-
stitute a distributed application. A distributed testing pro-
cess is introduced. Varying scheduling policies with a fixed
workload can be quickly tested. Simulation results for a
fixed scheduling policy can also be smoothed, through the
averaging of the results of multiple simulation runs following
this policy but with slightly varying workloads.

5.1 Policy Enumerator

The scheduling model presented in Section 2.1.2 is com-
posed of 7 policy decision points. Several policies are imple-
mented for each of them. Testing all valid combinations of
scheduling policies before major releases of the middleware
implementation is of high interest in practice. Comparing
their performance for a given workload is also of high inter-
est. Running these test cases on a Grid enables their com-
pletion in a reasonable amount of time, as recently proposed
by Duarte et al. [14].

To test as well as evaluate the performance of scheduling
policies, we propose to run a large number of instances of
the LBG simulator on a Grid based on the LBG middleware.
The simulator instances are configured with scheduling poli-
cies that vary but with a common workload.

With the evolution of the middleware, the number of test
cases will grow to a huge number of valid combinations.
For example, there are currently 1446 valid combinations
of scheduling policies in LBG (in addition, there are also ~
30 parameters to configure LBG). Skoll [23] is a distributed
continuous testing process. To handle extremely large sets
of combinations of policies, it adaptively selects which test
cases to actually run. A limited number of test cases are
initially selected. Some of them complete their execution,
others fail in the sense that they exhibit unexpected be-
haviors, such as exceptions, run-times errors and assertion
failures. Such failures are due either to programming mis-
takes, i.e. bugs, or to intentional checks manually coded by
the Grid application developer, i.e. to detect inconsistencies
in data structures or to enforce desirable properties such as
system liveness. Each test case that fails leads to the testing
of neighbor cases. This tends to minimize the number of test
cases to run, while maximizing the coverage of the test case
space. Such test case selection techniques can certainly be
added to our proposed distributed testing process.

5.2 Scenario Randomizer

The LBG simulator always produces the same output for
a given scenario. As a random seed is defined for each sim-
ulation run, random variations can be added to the Grid
environment, including synthetic workloads and in particu-
lar the inter-arrival times of submitted BoTs. Some values
of the random seed may lead to “limit cases” of input values
that bias the performance of scheduling policies.

To address this issue, we propose to run a large number
of instances of the simulator implementation of LBG on a
Grid based on its middleware implementation. The simula-
tor instances are configured with the same scheduling policy
but with slightly varying workloads, i.e. with a random set
of seed values. Simulation results accumulated in successive
simulation runs (such as peers utilization and mean BoT
response times) are averaged, reducing the influence of the
“limit cases” and hopefully smoothing out outlier results.

5.3 Distributed Simulation

Structuring multiple instances of the LBG simulator as a
BoT is actually straightforward. A task can be defined for
each intended simulation run to be completed. In the fol-
lowing, we refer to such a task as a SimTask, which is an
instance of the LBG simulator that is run on the P2P Grid.
We also call BoS a Bag of SimTasks. A different scenario
is given to each SimTask as an input data file. The output
generated by the SimTasks can easily be compared (for the
policy enumerator use case) or averaged (for the scenario
randomizer use case). Figure 8 illustrates a Bag of 3 Sim-
Tasks run on a P2P Grid, each of them simulating a whole
P2P Grid.
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Legend: 1 SimTask 5,02 = 1 simulator of a whole P2P Grid

Figure 8: Bag of SimTasks run on a P2P Grid.

Self-bootstrapping is the pattern where a current, stable
version of a given system is used to develop the next version
of this system. This pattern is common for compilers. Run-
ning multiple instances of the LBG simulator on the Grid
based on the LBG middleware can be considered as self-
bootstrapping. A Grid deployed with basic (or known to be
reliable) scheduling policies can help test and evaluate new
or improved scheduling policies running in SimTasks. Self-
bootstrapping thus enables our research work to contribute
to its own evolution.

A limited form of self-bootstrapping has been used for an-
other related P2P Grid middleware, OurGrid [26, 12]. Ad-
vanced accounting policies have been simulated by a special-
purpose discrete-event system simulator partially based on
code from the OurGrid middleware. Multiple instances of
this simulator have been structured as a BoS. They were run
on a Grid based on the OurGrid middleware deployed with
basic accounting policies.

6. EVALUATION
6.1 Co-Development

The initial middleware implementation has been devel-
oped in a separate development branch, in parallel with
the simulator implementation and scheduling code (which
is common to both the middleware and simulator). Follow-
ing the code once, deploy twice pattern has demonstrated
several benefits.

Firstly, the separation of concerns has enabled the intro-
duction of well-designed interfaces, simplified the develop-
ment, and led to a more focused and easier-to-maintain mid-
dleware implementation.

Secondly, every bug in the scheduling code was isolated
in the controlled environment of the simulator before they
appear (or sometimes immediately after) in the middleware



implementation. When an error or unexpected exception oc-
curred when executing the middleware, we used the simula-
tor with identically configured Grid nodes to trace the cause
of the problem. The difficulty of testing code on a real net-
work of live Grid nodes has thus been completely avoided,
except for a handful of deadlocks and timing issues. These
were identified with a run-time monitoring tool? providing
the state and stack of all threads of target Grid nodes.

Thirdly, deploying new scheduling policies is immediate
once they have been tested in the simulator: This speeds
up the development cycle and encourages to evaluate new
ideas.

6.2 Policy Enumerator

An example of the proposed distributed testing process
is now given for the policy enumerator. The introduction
of an adaptive preemption policy in the LBG middleware,
combined with general purpose refactoring, was done over
the course of one week. It brought the code base from 285
source files (391 classes, 53780 lines) to 292 source files (402
classes, 55621 lines), 73 of which were modified (either cre-
ated or updated).

We then run a BoS of 2892 SimTasks with a scenario in-
volving 20 synthetic Jobs submitted to each of the 15 sim-
ulated peers. The BoS was completed in 53 minutes on 100
resources: 2859 SimTasks were successfully completed, 40
SimTasks failed due to an exception in the task control code
and 3 SimTasks failed due to an exception in the RMS code.
After investigating the stack traces available in the execu-
tion logs of the failed SimTasks, we patched the issue in the
task control code.

Of the 2892 SimTasks, the configuration of 482 involved
the newly implemented adaptive preemption policy, yet only
43 failed due to the task control bug. Without the dis-
tributed testing process, this subtle issue would probably
not have been resolved before it resurfaced unexpectedly a
little while later at a more inconvenient time. Distributed
testing certifies that the software behaves as intended for
a specific set of well-known, typical Grid configurations and
workloads. Complementary mechanisms should also be used
but we believe that distributed testing is a valuable tool in
a software engineer’s toolbox.

6.3 Scenario Randomizer

To smooth simulation results as proposed in Section 5, the
simulator can be run multiple times with the same simula-
tion description, except for the master random seed which
is different each time. These multiple simulation runs can
be structured as a BoS (Bag of SimTasks) that is run by the
LBG middleware.

Two scenarios are considered and run multiple times. The
first scenario consists of a Grid of 4 peers that manage 4 re-
sources each. Each peer must process 60 (simulated) Bags of
40 Tasks. Peers can barter computing time. They are con-
figured to minimize queueing of external tasks while busy.
They also are configured to cancel (rather than preempt)
externals tasks when they need to reclaim their resources
for their own tasks. The Grid topology is identical in the
second scenario, but peers do not barter computing time.

Table 1 shows, for varying numbers of simulation runs,
the mean run-time of one simulation and the mean BoT
response time (MBRT) of all simulated BoTs. The mean

*http://www.yourkit.com/

run-time of one simulation is expressed in wall clock time
while the MBRT is expressed in simulated time. This ex-
periment shows that a single simulation run often leads to
results faster than the average of as few as 10 simulation
runs. These results hold for scenarios larger than the con-
sidered examples. Extensive statistical studies could be con-
ducted to determine the optimal number of simulation runs
required to achieve a given level of confidence. Orthogonally,
these results also show that bartering decreases the MBRT.

(a) 4-peers scenario with bartering

# sim runs 1 10 20 40 80 | 160
sim time (s) 7 9 10 11 8 9
MBRT (s) | 767 | 809 | 817 | 832 | 858 | 879

(b) 4-peers scenario without bartering

# sim runs 1 10 20 40 80 160
sim time (s) 5 8 8 7 8 9
MBRT (s) | 1249 | 1436 | 1449 | 1429 | 1416 | 1415

Table 1: Simulation run-times and mean BoT re-
sponse times achieved with the scenario randomizer.

6.4 Simulator Performance

The performance of the simulator is evaluated according
to the simulator run-time, i.e. wall clock time expressed in
seconds. The base scenario is the first scenario described in
the previous section (4 peers that manage 4 resources each,
each peer must process 60 (simulated) Bags of 40 Tasks and
peers can barter computing time). The simulator runs pre-
sented in Table 2 vary according to one of three parameters:
number of submitted BoTs, number of peers in the Grid,
number of resources per peer. All simulator runs have been
performed on a 64bits Intel Xeon CPU, using 15GB RAM.

Parameter Run-time (s)
Base scenario 7
BoTs x 10 10
BoTs x 100 163
BoTs x 1000 1605
BoTs x 10000 18089
peers x 10 106
peers x 100 1085
peers x 200 3457
peers x 400 7963
peers x 800 23271
resources X 10 6
resources X 100 7
resources X 1000 11
resources X 10000 69
resources X 100000 611

Table 2: Simulator completion run-times with vary-
ing scenario parameters.

The simulator performance is linear with the number of
submitted BoTs. The 100x BoTs experiment - which in-
volves nearly 1 million tasks (2400 tasks submitted to 4



peers, multiplied by 100) - exhibits performance that is asymp-

totically of the same order of magnitude as the performance
achieved by SimGrid [11].

The simulator performance is more than linear with the
number of peers (it must be noted that the total number
of BoTs submitted in the Grid grows with the number of
peers). However, memory consumption becomes unbear-
able beyond a few thousands peers, precluding larger sim-
ulations. Indeed, LBG peers memorize a lot of data about
their interactions with other peers (see Section 2.1.1): Even
if the interaction history is strictly bounded, the memory
requirements of the simulator are quadratic with the num-
ber of simulated peers. Memory management can be opti-
mized by both exploiting secondary storage and tuning the
peer discovery process. We believe that controlling memory
consumption can dramatically improve the simulator perfor-
mance in scenarios involving large numbers of peers.

The simulator performance is less than linear with the
number of resources per peer, as expected. Such scenar-
ios lead to less simulator iterations as the increased compu-
tational power enables peers to process BoTs much faster.
Nonetheless, the management of several hundred thousands
resources per peer induces a small performance penalty on
the simulation (but negligible for individual Grid nodes).

6.5 Simulator Bias

The time spent by the peers scheduling code is neglected in
the time management process. This small, yet systematic,
bias in time simulation is however acceptable. There are
many orders of magnitude between the time taken by peers
to process an incoming GNMP message (a few milliseconds)
and the time taken to execute a task on a resource (several
minutes to several hours).

On a typical desktop computer, a test scenario may take
less than 1 minute of wall clock time to simulate about 3
hours of operations of a medium-sized Grid (15 peers, 500
resources). Let rs = 3 x 3600 seconds = 10800 seconds be
the simulated run-time of a given scenario. Let r, = (60
seconds / 15 peers) = 4 seconds be the average run-time of
peer code (which is identical in both the middleware and
simulator implementations, thanks to massive code reuse).

For this typical test scenario, the time bias is bounded by
much less than 1% of the simulated execution time (r,/rs =
0.04%). Furthermore, this represents an overly large upper
bound on simulation bias, considering that some wall clock
time is spent by the simulator to initialize its data structures,
manage the event list and the environment controller.

7. RELATED WORK

There exists few Grid simulators: Bricks [2], ChicSim [25],
GangSim [15], GridSim [10], GSSim [20], OurGrid simula-
tor [26], SimGrid [11].

The discrete-event system simulator most closely related
to LBG is SimGrid [11]. It is a very advanced and flexi-
ble Grid simulator and middleware targeting the evaluation
of distributed systems. It is the only existing Grid simu-
lator (besides ours, and to the best of our knowledge) to
support the code once, deploy twice pattern. Code reuse is
an important design goal of SimGrid. Through its GRAS
component [24], it exposes an API of low level primitives
suitable for communications in applicative overlay applica-
tions. It allows developers to easily simulate, and also run
as part of a middleware, code that is built on top of SimGrid

components. GRAS requires to adhere to its API when de-
veloping scheduling algorithms. The LBG simulator, on the
other hand, is tailored to the middleware (although the ap-
proach itself is generic). GRAS would correspond to GNMP
services and handles (see Section 2.1.3) packaged into an
API, augmented with timing management (also available in
our simulator) but without support for simulation of multi-
threaded code. LBG could be seen as a synthesis of variants
of the OurGrid [12] middleware and the SimGrid [11, 24]
middleware/simulator.

GSSim [20], built on top of GridSim [10], is another closely
related discrete-event Grid simulator. It shares with Sim-
Grid and our simulator the goal to virtualize a Grid in order
to use the same code both in the simulator and the mid-
dleware code. Like SimGrid, it targets the evaluation of
scheduling algorithms. However, code reuse is limited to
the scheduling algorithms. A related web portal® acts as a
repository of trace workloads and scheduling algorithms.

8. CONCLUDING REMARKS

8.1 Summary of Contributions

Coding once and deploying twice enables reproducible test-
ing of distributed software. A middleware implementation
can be virtualized so that a simulator can be embedded:
Only communications between Grid nodes, multithreading
within Grid nodes and actual task execution are coded dif-
ferently in the simulator implementation. The middleware
and the simulator consequently share most of their code.
This shared code, which includes the scheduling code, can
be tested within the controlled environment of the simula-
tor. Distributed testing helps speed up the testing process.
The shared code can subsequently be deployed without any
modification as part of the middleware, on real networked
computers. This promotes separation of concerns, as well as
easy prototyping, evaluation and integration of new schedul-
ing algorithms.

8.2 Future Work

The simulation of multithreading activities should be ex-
tended and more flexible; recent research on run-time mon-
itoring [1] and testing [13] of multi-threaded code may pro-
vide insights in this respect.

Data transfers are currently not taken into account. Sim-
ulating data transfers will considerably improve simulation
accuracy when dealing with Data-Intensive BoTs [8].

It would be useful to define an API to facilitate the use
of the code once, deploy twice pattern, as is done in Sim-
Grid [11, 24]. It would also be useful to standardize the
description of Grid configurations (including which schedul-
ing algorithms to use) and deployment metadata, as is also
done in SimGrid [11] and in GSSim [20]. Adding support
for trace workloads would also be of high interest.
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