
3. Cloud environment

* Voyeur Tools cloud-based text analytics
* web interface

* compute cluster: 224 cores, 1 GB RAM per core
* multiple filesystems: HDFS, Lustre, local
* implementation: Java, Apache Hadoop

Structuring All-Pairs as a MapReduce Application

http://voyeurtools.org/

Cyril Briquet, Stéfan Sinclair

McMaster University, Hamilton, Ontario

All-Pairs problem (Thain 2008):

<< All-Pairs(set A, set B, function F) returns matrix M:
Compare all elements of set A to all elements of set B
via function F, yielding matrix M,
such that M[i,j] = F(A[i],B[j]) >>

1. Problem description 2. Application scenario
Old Bailey corpus (London court, 17th-20th cent.):
* largest historical collection of judicial records
* 200,000 TEI-encoded XML documents

<< estimate document similarity for all 40 billion pairs of Old Bailey records >>
* comparison metric applied to full text of records:
 Normalized Compression Distance (Cilibrasi 2005)

* challenge at scale: transferring large amounts of data

* each record (full text + id) = 4 kilobytes
* 40 billion of record pairs = 320 terabytes
 (unoptimized approach)

Acknowledgments
* Digging into Data (www.diggingintodata.org)
* Shared Hierarchical Academic Research Computing Network (SHARCNET:www.sharcnet.ca) and Compute/Calcul Canada
* Tango icons library (http://tango.freedesktop.org/), under Creative Commons Attribution Share-Alike license

* a structuring of All-Pairs as a MapReduce application has been presented
* summary: MapReduce transfers only the designation of input data, external channel transfers the actual input data
* approach valid because of: (1) problem structure, (2) availability of high performance file system / file sharing system
* All-Pairs for 20% of Old Bailey corpus is computed in 40 minutes on current cluster
* experiments needed to determine conditions under which to use HDFS, Lustre or BitTorrent

5. Conclusion

4. Dictionary data as the main input data transfer channel

shared
storage

shuffle

dictionary
data

input
records

200,000 record full texts
* ~800 MB = 0.004% of unoptimized approach
* transferred using HDFS, Lustre or (soon...) BitTorrent,
 but not Hadoop distributed cache (does not scale)

40 billion record id
* packaged into many MapReduce input files
 (so that each map task runs ~20 minutes)
* ~5GB (448 files, ~10 MB each)
* transferred using HDFS

 local
storage

shared
storage

mapper

MapReduce
 daemon

 shared
storage

 local
storage

reducer

MapReduce
 daemon

output
records

shared
storage

* total order of the output data (comparisons of record pairs)
 guaranteed by passing an output shard index through the mapper and reducer keys
 (each record pair preassigned to an output shard before invoking MapReduce)

* in practice, each mapper maintains an in-memory hierarchical cache to minimize accesses to the file system

* our approach: provide MapReduce with data designation information only,
transfer input data as dictionary data, using an external data transfer channel

* typical MapReduce app: partition input data into key/value MapReduce records

* original insight: All-Pairs does not require MapReduce to handle lots of data, only lots of computations

http://voyeurtools.org/

0 1 2 ...

